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SUMMARY

This ASTMRound Robin was conducted to evaluate the state of the art

in stress analysis of adhesively bonded joint specimens. Specifically, the

participants were asked to calculate the strain-energy-release rate for two

different geometry cracked lap shear (CLS) specimens at four different

debond lengths. The various analytical techniques consisted of 2- and

3-dimensional finite element analysis, beamtheory, plate theory, and a

combination of beamtheory and finite element analysis. The results were

examined in terms of the total strain-energy-release rate and the mode I to

mode II ratio as a function of debond length for each specimen geometry.

These results basically clustered into two groups: geometric linear or

geometric nonlinear analysis. The geometric nonlinear analysis is required

to properly analyze the CLS specimens. The 3-D finite element analysis

gave indications of edge closure plus some mode III loading. Each partici-

pant described their analytical technique and results. Nine laboratories

participated.





INTRODUCTION

Many applicationsof adhesivesresult in bonded joint

geometriesthat have complex stress states at the bondline

termination. Debond initiationand growth may occur which could

lead to joint failure.Because debonding is a self-similarcracking

problem, it is natural to describe the phenomenon in terms of

fracturemechanics. Furthermore,depending on the joint geometry and

loading conditions,these stress states can result in three modes of

debond growth:

(i) Opening mode I, due to tensile stress normal to the plane of the

debond, results in a GI strain- energy-release rate.

(2) Shearing mode II, due to in-plane shear stress, results in a GII

strain-energy-release rate.

(3) Tearing mode III, due to anti-planeshear stress, results in a

GIII strain-energy-releaserate.

The calculation of the strain energy release rate under such

conditions is not trivial, especially when geometric non-linearities

may exist. If standard test methods are to be developed to

assess mixed mode static fracture toughness and debond propagation

rates for designing adhesively bonded joints, confidence must be

obtained in the methods used to calculate the mixed mode values of

strain energy release rate. By comparing various analytical
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approachesto common problems can one determinewhich techniques

give acceptableanswers.

This problem of calculating the strain energy release rate for

adhesive joints has been address by ASTM Task Group E24.04.09 on

Crack Growth in Adhesively Bonded Joints. ASTM Committee E-24 on

Fracture Testing sponsors this task group. The task group was formed

in 1981 to evaluate and recommend test methods for characterizing

debond propagation in adhesively-bonded joints. In the beginning

the task group decided that prior to conducting tests or

recommending testing procedures it needed to assess the present

state of the art in stress analyses that can be used to study debond

propagation under mixed-mode conditions in adhesively-bonded joints.

For this purpose a round robin was conducted and is described

herein.

The cracked-lap-shear (CLS) specimen [i] was chosen for

evaluation. The CLS specimen has been used for studying composite

delamination [2, 3, 4, 5] and adhesive joint debonding [i, 6, 7].

The debond tip in the CLS specimen is predominatly loaded in mode II

with approximately thirty percent mode I. The CLS specimen is

representative of the mode mix found in many applications of bonded

joints and was therefore chosen as an appropriate specimen for the

round robin. There is no known "exact" solution for the CLS

specimen. The round robinresults will be compared to each other

and to experimentally observed specimen behavior to see if any

consensus "correct" solutions exist.
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The two CLS specimen configurations analyzed are shown in Figs.

1 and 2. As shown in the figures, the difference in the two

configurations is the thickness of the lap adherends. The adherends

are aluminum. Table I gives the assumed material properties. Boundary

conditions are also shown in Figs. i and 2. A 11.12 kN tensile load

was applied for both specimen geometries. Perfect bonding between the

adhesive and adherend was assumed. The material properties were

considered to be linear elastic with no time-dependent behavior. For

this round-robin effort, the debond was located at the middle of the

adhesive layer although that is not usually the case in practice [7].

The debonding normally occurs near the strap adherend.

The information sought from each participant was their

calculated strain-energy-release rates, GI and GII. The tearing

mode GIII was reported, if available. Debond lengths of 2.54, 6.35,

25.40, and 101.60 mm were analyzed for both specimen configurations.

Table II lists the organizations and people who participated in

this round robin. Also listed in the table are their techniques

used to predict the strain-energy-release rates and the symbol

representing each technique used in subsequent data plots. Table II

also gives the appendix number for each participant. Each appendix

gives details about the analysis techniques used and the resulting

predictions. The techniques fall into four general classes: Closed

Form, Geometric Linear Finite Element Analysis, Geometric Nonlinear

Finite Element Analysis, and mixed Closed Form / Finite Element



Analysis. All reported analysis used linear elastic material

properties. In this paper linear or nonlinear analysis refers to

geometric linear or geometric nonlinear analysis.

PREDICTEDRESULTS

Figs. 3 and 5 show the predicted values of total strain-energy-

release rate, GT, versus debond length, for the equal and unequal

thickness adherend, respectively, where GT = GI + GII +GIII. The

plotted values of GT are as calculated; however, the results are

grouped according to the analysis method. The first group (going left

to right) is the Closed Form results: the second group is the

Geometric Linear Finite Element results; and the third group is the

Geometric Nonlinear Finite Element results. The third group includes

the mixed Closed Form/Finite Element Analysis method. A symbol is

assigned to each prediction technique as given in Table 2. Figs. 4

and 6 show the predicted ratio of GI/GII versus debond length for the

equal and unequal adherends, respectively. The plotted values of

GI/GII are grouped as discussed above.

For the equal thickness adherend specimen results shown in Fig.

3, the four geometric nonlinear analyses resulted in a rather constant

GT as a function of debond length, while the geometric linear analyses

resulted in a "humping" of the data with debond length. There is

reasonable scatter (less than I0 percent) within each analysis

approach (geometric linear or nonlinear). The 3-D geometric linear

predictions _ resulted in a GT about I0 percent higher than the
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average of the 2-D geometric linear. The geometric nonlinear analysis

results of Law (0) are approximately i0 percent higher than the other

nonlinear results. (Notice that Law only predicted GT at debond

lengths of 2.54 and 101.6 mm). Law assumed plane stress conditions

while the other participants chose plane strain conditions for their

2-D analysis. The results of Erdogan's Reissner plate theory _)

approach are very close to the 2-D geometric linear F.E. analysis

while Brussat's closed-form beam theory (+) method is close to the

geometric nonlinear F.E_ analysis.

The data trends for the GI/GII ratio predictions of the equal

thickness adherends shown in Fig. 4 is similar to those previously

discussed for GT except for the Lof's 3-D predictions <>). Lof's

GI/GII ratios are noticeably lower than those predicted by any of the

other techniques.

The GT behavior of the unequal thickness adherend shown in Fig.

5 is similar to that of the equal thickness adherend. Again the

plate theory and the geometric linear analyses showed a "humping"

with increasing crack length while the virtual crack extension/beam

theory method and the geometric nonlinear analyses gave constant GT

with increasing crack length. Mall's (_) and Hufferd's _) analysis

were about 10 percent below the other two nonlinear analysis and the

beam theory for some unexplained reason.

The GI/GII ratio predictions shown in Fig. 6 for the unequal

thickness adherends followed the same trends as the GT predictions
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with two notable exceptions: the beam theory GI/GII ratio was much

higher than that predicted by the geometric nonlinear analyses; and

the combination beam theory/finite element analyses resulted in a

significantly higher GI/GII ratio at 101.6 mm than at the shorter

debonds.

All of the finite element analyses used Rybicki and Kanninen

[9] virtual crack closure technique to calculate values of GI and

GII , except for Hufferd's and Lof's. They calculated stress

intensity factor, K, then converted to strain-energy-release rates.

DISCUSSION

There is excellent agreement among the 2-D geometric nonlinear

analyses of the equal thickness adherends CLS specimen. The geometric

nonlinear analysis of Law (0) assumed plane stress conditions while

the analysis of Everett and Whitcomb (O), Mall (_), and Dattaguru and

Mangalgiri (_) assumed plane strain conditions. The plane stress

analysis will result in GT being I/(I-V_) (i.e. 1.19) higher than the

plane strain analysis. This is approximately the difference observed

in Fig. 3. In appendix VII, Law shows how the geometric nonlinear

analysis requires several iterations to converge. He also discusses

the importance of modeling the entire bondline and not just a short

portion.

For the equal and unequal adherend specimens the beam theory

predictions of GT are very close to the geometric nonlinear
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predictions. As seen in Figs. 4 and 6, the values of the geometric

nonlinear GI/GII ratio is about the same for the equal and unequal

thickness adherends specimens (0.25 and 0.225, respectively) in

spite of the rather significant change in geometry. The beam theory

analysis results were 0.27 and 0.36, respectively. Dattaguru,

Everett, Whitcomb, and Johnson [8] have suggested that the beam

theory approach is accurate for GI/GII determination for only equal

thickness adherends specimens. Brussat did not include the debond

length, a, in the calculation of GT, GI, and GII; thus, these values

are independent of debond length.

In Appendix I, Anderson, Abrahamson, and DeVries calculate GT for

a debond length of 50.8 mm (in addition to the four lengths requested)

in the equal thickness adherend using a geometric linear analysis. The

GT at 50.8 mm was significantly higher than for the 25.4 mm debond

length. This indicates that the "hump" predicted by geometric linear

analysis is even higher than shown in Fig. 3, indicating a larger

discrepancy between geometric linear and nonlinear analyses. In

Appendix IV, Erdogen and Joseph present GT as a continuous function of

debond length, also illustrating the "humping" behavior.

In Appendix I, Anderson, Abrahamson, and DeVries presented two

sets of analytical results. The first set used a rather course mesh
h

and a GT of 375 J/m2 was obtained. The mesh was then refined and a

value of GT equal 213 J/m2 resulted. This was consistent with the

other 2-D linear finite element analysis. Thus, Anderson, et al.

found that too course of a mesh could give poor results.
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The geometric nonlinear analyses presented for the two example

problems herein predicted GT to be practically constant with debond

length. This is not always true. For specimens with shorter lengths

or thicker strap adherends the predicted GT may vary with debond

length [8,10]. However, the constant values of GT with debond lenght

are believed to be the correct results for these geometry specimens.

Debond growth rates have been shown to be constant over crack lenght

in similar geometry specimens made with adhesives shown to have growth

rates that are governed by GT [7,11]. Furthermore, in reference 8,

measured displacements in a cracked lap shear specimen agreed closely

with the geometric nonlinear analysis and not with the linear

analysis. All of this points to the need to use a geometric nonlinear

technique for analyzing the CLS specimen [4,8].

For those configurations of the CLS specimens that do show a

variation in the geometric nonlinear GT with debond length [8] , the

beam theory approach will give incorrect results. This is because

the beam theory will give only one value of GT since the theory

assumes an infinite specimen length.

Mall's (_) approach models the crack tip area with finite

elements to calculate strain-energy-release rate but uses the beam

theory for overall specimen behavior. For equal thickness adherends

specimen, Mall's results are about 5 percent above the geometric

nonlinear finite element results. For the unequal thickness

adherend, Mall's results for shorter crack lengths are about the same
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as for the other nonlinearpredictions ; however, his results are

higher for the longer crack length.

Lof's _>) results were very interesting. He used a 3-D

geometrically linear finite element method. The GT and GI/GII ratios

were not very close to the 2-D analyses for reasons unknown.

However, his analysis showed that GI and GII varied across the width

of the specimen and that a GIII existed near the edges of the

specimen. The GT remains fairly constant across the width of the

specimen while the GI, GII, and GIII components vary. The edge

closure discussed by Lof is quite surprising. The effects of edge

closure, which is obtained only by the 3-D analysis, needs to be

further studied.

CONCLUSIONS

Fracture mechanics is being used to describe static toughness

and damage growth behavior in adhesively bonded joints. Because the

stress states at the crack tip in a bonded joint can be complex

and result in several potential modes of crack propagation, it is

critical that the joint specimens be analyzed properly in order to

insure correct interpretation of experimental test results. To aid

in evaluating potential techniques for analyzing bonded joints,

ASTM Committee E-24 sponsored a round robin stress analysis of the

cracked-lap-shear specimen. The participants were asked to

calculate the strain-energy-release-rate at four different debond

lengths on two different geometry specimens. The results of this
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round robin yielded the followingconclusions:

i. There was good lab-to-lab consistency of predictions between

analytical techniques of the same type. For example, all of the 2-D

geometric linear techniques gave results within 5 percent of each

other. These results suggest that although no generally applicable

closed form solutions exists for the cracked lap shear specimen, good

consistent results can be obtained by properly using finite element

techniques.

2. The geometric nonlinear analysis techniques give results that

are most consistant with observed experimental behavior and should

therefore be used for analyzing the cracked lap shear specimen.

3. Brussat's beam theory approach gives a good closed-form

approximation of total strain-energy-release rate for the example

CLS specimens. However, beam theory does a poor job of predicting

GI/GII ratio when the adherends are of different thickness.

4. Care must be taken to ensure proper modeling of the specimen in

order to get correct results. For example, the adhesive bondline must

be modeled with proper grid density (as discussed by Anderson, et al.)

Also, the full bondline, not just the near crack-tip region, needs to

be included in the model (as discussed by Law).
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5. The three dimensional analysis showed that an edge closure

effect may be present at the debond front of the cracked lap shear

specimen. This analysis also indicated that a small amount of GIII

was present near the edge. The GT remains nearly constant across

the debond front although the mixture of GI, GII , and GIII varied.

This three-dimensional effect discussed by Lof needs to be studied

further.
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Table I. -Material Properties

- Aluminum adherend Adhesive

E 72450 MPa 1932 MPa

0.33 0.40
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TABLE II - ROUNDROBIN ANALYSES& PARTICIPANTS

ANALYSIS NAME ORGANIZATION TECHNIQUE/MODEL SYMBOL APPENDIX

CLOSEDFORM T. R. BRUSSAT LOCKHEED-CALIFORNIACO. BEAM THEORY _ II

F. ERDOGAN LEHIGH UNIVERSITY REISSNERPLATE THEORY IV
A

P. JOSEPH

GEOMETRIC G. P. ANDERSON/ THIOKOLCORPORATION/ F. E. TASS {]m I

LINEAR L.P. ABRAHAMSON UNIVERSITYOF UTAH

K. L. DEVRIES

R. A. EVERETT NASA LANGLEY F. E. GAMNAS [] V

J. D. WHITCOMB

-_ W. L. HUFFERD UNITEDTECHNOLOGIES-CSDF. E TEXGAP • Vl

C. LOF NATIONALAEROSPACELAB. VIII
NLR (THE NETHERLANDS)

GEOMETRIC B. DATTAGURU/ INDIANINSTITUTEOF F.E. GAMNAS (EAST) (_P Ill

NONLINEAR P. MANGALGIRI SCIENCE

W. L. HUFFERD UNITED TECHNOLOGIES-CSDF. E. VISTA _ Vl

G. E. LAW GENERALDYNAMICS/FW F.E. NASTRAN Q Vll

R. A. EVERETT NASA LANGLEY F.E. GAMNAS 0 V

J. D. WHITCOMB

MIXED S. FriLL U. OF MISSOURI-ROLLA BEAM THEORY + LINEARF.E. • IX
GEOMETRICNONLINEAR
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APPENDIX I

G. P. Andersonand L. P. Abrahamson
Thiokol Corporation
BrighamCity, Utah

and

K. L. DeVries
Departmentof Mechanicaland IndustrialEngineering

Universityof Utah
Salt Lake City, Utah

APPROACH

The analysis of the equal thicknessadherendcracked-lap-shearspecimen

(CLS-A)was completedusing a linearelastic finiteelement computerprogram

(TASS - generatedby Morton Thiokol, Inc.). No specialcrack tip elements

were used. A thin row of elementswas input at the center of the adhesive;a

crack was simulatedby replacingthese elementswith "void"elements (that is,

a zero or near zero stiffnesselement).

Mode I and mode II energy releaserates (GI and GII) were calculated

using the modified crack closuremethod outlinedin the referencebelow. The

grid network consistedof 1,710 quadrilateralelements,three elements through

the thicknessof each adherend and seven through the adhesive. Each quadri-

lateralelementwas automaticallydividedinto four lineardisplacementele-

ments by the computerto calculategrid displacements. The grid network as

shown in Fig. I-1 contained0.003 in. × 0.0008 in. quadrilateralelements near

the crack tip.

The modified crack closuremethod requiredthe two equations:

Fy(UyI - Uy2)
GI = 2aa

Fx(Ux1 - Ux2)
GII = 2aa
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where Fx and Fy are the forces requiredto close the crack a distance

aa and Uxi, Uyi are the x and y crack openingdisplacementsa dis-

tance aa behind the crack tip [I-1].

RESULTS

The resultingenergy releaserates for five crack depths are presentedin

Table I-1.

The initialanalysis for the 101.6 mm (4 in.) crack depth used a linear

displacementelementand the grid shown in Fig. I-2. A total energy release

rate of 375 J/m2 was obtained. It was later determinedthat the grid network

between x = 50.8 and x = 139.7 mm was too coarseto providean adequate

beam bendinganalysis. The properenergy release rate (213 J/m2) was obtained

by using a quadraticdisplacementelementwith a coarse grid similarto

Fig. I-2 or by using a finer grid (Fig. I-1) with the lineardisplacement

element.The grid in Fig. I-2 used 1,710 elementswhile the grid in Fig. I-1

required2,347 elements. The quadraticdisplacementelement grid used 640

eight-nodeelements.

REFERENCES

[I-1] Rybicki,E. F. and Kanninen,M. F.: "A Finite ElementCalculationof

Stress IntensityFactorsby a ModifiedCrack Closure Integral",

EngineeringFractureMechanics,Vol. 9, pp. 931-938, 1977.
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TABLE I-1

CalculatedStrain Energy ReleaseRates
With Debond In Middle Of Adhesive

j/m 2

Debond

Length
in. 0.10 0.25 1.0 2.0 4.0
mm. 2.54 6.35 25.40 50.80 101.60

CLSA

GI 35 42 57 95 48

GII 144 153 180 234 165

GT 179 195 237 329 213
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APPENDIX II

T. R. Brussat
Lockheed-CaliforniaCompany

Burbank,CA 91520

APPROACH

Using elementarybeam theory closed-formanalyticalsolutionswere

obtained for the mode I and mode II componentsof the strain-energy-release

rate for both CLS specimengeometries.

Reference If-l, which first introducedthe CLS specimen,providesmost of

the equationsused here. The assumptionis made in Ref. II-1 that the length

of the specimen and crack are large comparedto the thicknesses;consequently

the equationsare all independentof crack length.

The adhesive layer is relativelyflexibleand relativelythin. The con-

tributionof adhesive stiffnesscan thereforebe neglected. However,the

bondlinethicknessdoes significantlyaffect the offset distancecharacteriz-

ing the crack-tipeccentricity,and it also significantlyaffectsthe moment

of inertiaon the uncrackedend of the specimen. Therefore,bondlinethick-

ness is consideredin calculatingthese quantities.

AnalyticalEquations

An exact expressionfor total strain-energy-releaserate of an infinite-

length CLS specimen is derived in Ref. II-l. The resultingEquation is

p2 [ (EA)2]GT = 2bN(EA)2 1 - -_o] (II-1)

where P is the applied load; bN is the specimenwidth (measuredat the

bondline); (EA)2 is the tensile rigidityof the strap; and (EA)o is the total

tensile rigidity (lap+ strap).
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Ordinary beam theory is used in Ref. II-I to obtain expressionsfor the

mode I crack openingdisplacementsand the limitingvalue of the internal

bendingmoment at the crack tip for the infinite-lengthspecimen. The deri-

vation presentedin Ref. II-1 could have been modified to satisfythe round-

robin boundary conditions(i.e. specimenlength and loadingconditions),but

for simplicitythis was not attempted. The expressionsgiven in Ref. II-1 are

given in terms of two dimensionlessparameters, Y2 and Yo, which are

relatedas followsto the bendingrigidities(El)2 and (EI)o of the strap

sectionand the combined (lap+ strap) section, respectively:

_2 = _p/(El)2

_o = _P/(El)o (II-2)

The mode I crack openingdisplacementa distance x from the crack tip is

given by

Y2"Y° ( -}'2x )Y' - 1 + (_,2/_o) : e + _2x -I (11-3)

where Y2 is the centroid location of the strap section, and Yo is the

centroid location of the combined section. The limiting value of internal

bending moment at the crack tip is

(Y2-Yo)P
Mo (II-4)

An approximationfor the mode I componentof strain-energy-releaserate

is derived in Ref. II-1 under the followingassumptions:
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(1) GI for a CLS specimenin tensionis equal to GI for a CLS specimen

subjectedto end moments of magnitude Mo.

(2) GII/GT = 4/7 for the CLS specimen in pure bending. (This is the

exact beam-theoryresult for equal thicknessadherendsand a zero-thickness

adhesive layer).

In accordancewith these two assumptions,the Equation for GI given in

Ref. II-1 is

GI : 1 - -_o] (II-5)

Recentlythe author has re-examinedthe second assumptionabove. For

purposesof the round-robinanalysisstudy, a second way of estimatingGI was

proposed,based on the followingalternativeassumption:

The problem of the CLS specimenin pure bendingcan be separatedinto the

approximatelyPure mode I and approximatelyPure mode II problemsshown in

Fig. II-l.

The pure bendingof the CLS specimenunder end moments,Mo, is shown in

Fig. II-l(a). In (b) the moment Mo is balancedby a pair of moments, M1

appliedto the lap and M2 appliedto the strap. The magnitudesof M1

and M2 are each proportionalto the ratio of the bendingrigiditydividedby

the centroidaldistance from the bondline, (EI)i/lYlland(EI)2/lY21respec-

tively. This createsequal and oppositebending strainsalong the two faces
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of the crack,which is an antisymmetriccondition. The magnitudesof M1

and M2 are given by

Mo(EI)I/IYlI
MI=

(EI)l/lYll+"(El-)2/ly21'

(II-6)

Mo(EI)I/IY21

M2 = _E'i)i/lYl'I + (E'I)2/lY21

In Fig. II-l(c),an approximatelypure mode I case is shown such that

superpositionof (b) and (c) would lead to (a). Thus, the solutionGI for the

case shown in Fig. II-l(c)is an alternativeapproximatesolutionfor GI for

the CLS specimen loaded in tension. Tada, et al., (Ref. II-2) give the

followingsolutionfor the configurationshown in Fig. II-l(c):

GI =_N + (II-7)

In the resultsthat follow,Method 1 uses Eq. (II-5)to estimateGI,

while Method 2 uses Eqs. (II-6)and (II-7).

GIII vanishes in this 2-dimensionalanalysis. Therefore,the mode II

strain-energy-releaserate can be estimatedby subtraction:

GII = GT - GI (II-8)

The relativesliding-modedisplacements,Ax, betweenthe crack surfaces

result additivelyfrom the tensileload and bendingmoment in the strap;the
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lap is assumed to be stress-free. From the beam theory analysis results given

in Ref. 11-I it can easily be shown that

Px h2Mo -_2 x

ax = _+ 2(EI)2_2 (I - e ) (11-9)

where h2 is the thicknessof the strap.

RESULTSAND DISCUSSION

Table II-1 gives the strain-energy-releaserate componentsfor CLS A and

CLS B.

Note that the two differentmethods of estimatingGI give very different

resultsfor the unequaladherendcase, CLS B. Eq. (II-5) (M,ethod 1) results

in a GI/GII ratio of 0.36, whereasEq. (II-7)(Method2) gives GI/GII = 0.54.

Since the supportingassumptionsfor Method 2 seem more valid, but the

resultsfor Method 1 seem more likelyto be correct,it is of interestto sub-

mit both for the round-robinstudy.
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TABLE II-i

CalculatedValues of Strain Energy ReleaseRate

J/m2

CLSA CLSB
Method I Method II Method I Method II

GI 44 44 74 97

GII 164 164 204 181

GT 208 208 278 278

GI/GII 0.27 0.27 0.36 0.54
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Figure II=1. Approximatelysymmetricand antisymmetriccomponentsfor the
CLS specimenbending.
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APPENDIX III

B. Dattaguruand P. D. Mangalgiri
Departmentof AerospaceEngineering

Indian Instituteof Science
Banagalore,India

APPROACH

A Finite ElementAnalysiswas carriedout on a two dimensionalplane

strain idealizationof the cross-sectionof these joints. The eccentricityof

load transfer in these joints causes large rotationsand so a geometrically

nonlinearfinite element analysiswas employed (Refs. III-1, III-2, and

III-3). The basic approachused was Lagrangianwhere the displacementsare

referredto the underformedconfigurationof the structure. The geometric

nonlinearitywas introducedin the strain-displacementrelationsas

_x- _ L\_/ +\_J j

(,,,,,
: DV+½L\_y/ +\_)j"y _y

@u Bv @u Bu By By
Y_=_ + _ + _ _ + _ _

where u and v are displacementsalong x and y axes. Isoparametric

elementswere used. The tangent stiffnessmatrix at any stage of deformation

was calculatedas

KT = Ko + KL + Kg (III-2)
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where Ko, KL and Kg are the linear,large displacementand geometric

stiffnessmatrices. A Newton-Raphsoniterativescheme was employedand the

tangent stiffnessmetrix was updatedafter every four iterations.

CALCULATIONSOF GI AND GII

The mode I and mode II strain-energy-releaserates GI and GII were calcu-

lated based on virtualcrack extensionmethod (Ref. III-4). In order to

account for large rotationof the debond,the componentsof forces and dis-

placementsin the directionsalong and normal to the center line of the

deformeddebond configurationwere used to calculateGI and GII (Fig. Ill-l).

Thus

GI =½Py' b aa

1 - )
GII = _ Px' b A a (III-3)

where u' and v' are displacementsalong x' and y' axes as shown in

Fig. Ill-1.

Finite ElementModel

A typical finite elementmesh used for the present analysisis shown in

Fig. III-2. The mesh has 371 nodes and 320 elements. Other models varied

between305 to 375 nodes and 258 to 320 elements. In all the models,the thin

adhesivewas dividedinto two layers of elements across the thickness. The

applied loadingwas assumedto be uniformon the loaded end and was distri-

buted as a consistentload vector at the nodes.
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NUMERICALRESULTS

Analysis was carried out for debond lengths a = 0.1, 0.25, 1.0 and

4.0 in. The strain-energy-release rates for all these cases are shown in

Table III-I.
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TABLEIII-1

CalculatedStrain Energy ReleaseRates
With Debond In Middle Of Adhesive

J/m2
J

Debond
Length,
in. 0.10 0.25 1.0 4.0
mm. 2.54 6.35 25.40 101.60

CLSA

GI 37 37 37 38

GII 150 150 151 153

GT 187 187 188 191

CLSB

GI 49 49 50 44

GII 224 225 227 218

GT 273 274 277 262
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Figure III-I. Transformedcoordinatesystem for G calculations.
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APPENDIXIV

F. Erdogen and P. Joseph
Lehigh University, Bethlehem, PA 18015

ASSUMPTIONS

The stress analysis of the round robin cracked-lap-shear specimens is

solved under the following assumptions:

(a) The adherends are approximated by Reissner plates. That is a plate

theory taking into account the transverse shear effects rather than continuum

elasticity is used in formulating the problem.

(b) The problem is assumed to be one of plane strain; that is €z is

assumed to be zero for the entire specimen.

(c) The adhesive is assumed to be an elastic layer in which the thickness

variation of stresses is neglected. In formulating the adhesive a slight im-

provement is made over the conventional uncoupled tension-shear spring model

by taking into account the effect of the average in-plane strain €x-

Partial reasons for adopting the particular analytical model for the

adhesive joint are as follows:

(I) Generally, in adhesively bonded structures, the thickness of the ad-

hesive is very small compared to the thicknesses of the adherends which, in

turn, are small compared to the in-plane dimensions of the joint. The "plate"

theory is known to deal quite satisfactorily with structures having such

geometries.

(2) The plane problem can be solved in closed form (Ref. IV-I).

(3) The technique can be extended to treat adhesively bonded joints with

complicated geometries and to take into consideration such effects as viscoe-

lastic behavior of the adhesive (Ref. IV-2).
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(4) Even though the model is not suitablefor the calculationof a

"stressintensityfactor",it is suitablefor the calculationof the "strain-

energy-releaserate".

(5) For one specimen geometrytested the tensileand shear stresses in

the adhesive obtained from the plate model appear to be in good agreementwith

those given by the finite elementmethod (Ref. IV-l).

APPROACH

The two adherendsare assumedto be "plates"under in-planedeformations

and bending. The equalibriumequationsfor the lap and the strap adherendmay

be expressedas follows:

dNlx dQlx dMlx hI + ho- (IV-I)
dx - T, dx - _ dx Qlx 2

dN2x _ dQ2x _ dM2x h2 + ho
dx -T, dx -o, dx - Q2x 2 3, (IV-2)

where for i = 1 and i = 2 Nix, Qix, Mix, are the stress and moment resul-

tants in the lap and strap adherends,respectively,and T and o are the

shear and the normal stress in the adhesive. The stress and moment resultants

are relatedto the x, y-componentsof the displacements ui, vi and to the

rotations Bix, (i = 1,2) by

dui dvi Qix dBix

dx - CiNix' d--_-+ Bix - Bi ' dx - DiMix, (i=1,2) (IV-3)

12(1-VixViz)
1-VixViz,Bi = _ hi Gi D. - (IV-4)

Ci - hiEix xy' i 3Ehi ix
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Assuming that y-dependenceof the strains _x, Cy, and Yxy in the

adhesiveis negligible,from kinematicalconsiderationsit may be shown that

vI - v2

"o ½ u2½h2B2X)I"o

duI hI dBlx du2 h2 dB2x
Cx : (d-x-- 2- d----x-+ _ + 2- -T)/2' (IV-5)

where ho, hI and h2 are the thicknessesof the adhesive,the lap adherend

and the strap adherend,respectively. If E, and v denote the elastic

constantsof the adhesive,its stress-strainrelationsmay be expressedas

2

= I-v-2_ v 2CI+_) (IV-6)
Cy L_ _ -TZ-_" Ex' Yxy = T E

By simple eliminations,Equations(IV-1)-(IV-6)may be reducedto a

system of differentialequationsfor the functions T(x) and o(x) which can

then be solved in closed form (seeRef. IV-1 for details).

Strain Energy ReleaseRate

In an elastic structurecontaininga flaw of "area" A, ignoringthe

dynamic effects,the energy balanceEquationmay be expressedas

d (U-V) = YFG =d--A-

where U is the work done by the externalforces, V is the stored elastic

energy and YF is the fractureenergy of the material. In Equation (IV-7)

the left-handside representsthe externallyadded or internallyreleased

energy availablefor fracture,and YF is the measure of the fractureresis-

tance of the material. If the bulk of the structureundergoeselastic
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deformations,it is known that G is the same under "fixed grip" and "fixed

load" conditions.Thus, G can be calculatedsimilarto the crack closure

energy by consideringthe advanceof the debond front, and by assuming fixed

grip conditions.

As the debond front advancesby a length da, dU = 0 and dV (per unit

crack front)may be calculatedby relaxingthe stress state in the adhesive

for a volume ho (l.0)(da)and the surfacetractions _(X) and T(X) acting

on the adherendsalong the debond area da to zero. The strain energy released

by the adherendsdue to the relaxationof the tractions a and _ may be

expressedas

1 1
dV1 = - _ ada (6tl + 6t2) - _ Tda (_sl+ 6s2) (IV-8)

where 6ti and 6si, (i=1,2)are the y and x-componentsof the displacements

of the adherend surfacesat the debond regionda due to the removalof the

tractions oda and Tda and the minus sign is due to the fact that during

the releaseprocess,the directionsof the forces and the displacementsare

opposite to each other.

The strain energy releasedfrom the relaxationto the adhesivemay be

obtained from

a+da ho 1
dV2 =- f dx f dy i dz W (IV-g)

a o o

where W is the strain energy densityin the adhesive. In the model used and

for the plane strain problemunder consideration,the adhesive stressesare

assumedto be independentof y and z. Thus, Eq. (IV-9)can be expressedas

1
dV2 = -Whoda = - _ (_xCx + ayCy + TxyYxy)hoda (IV-10)

43



where W is calculatedat the debondfront. For the problemunderconsidera-

tionwe have (REF.IV-l):

ho E x2(a) Z- -2 2T2(a)2(1- )da(IVit)dV2 - "_ 1__2 + _ + E

where E, _ and G are the elasticconstantsof the adhesiveand Cx, a,

and T are calculatedat the debond front a.

We now observethat the plate theorywould give the displacementsin the

adherendsas follows:

oda , Tda (I-_i)(i=1,2)
_ti : _ _si : E. (IV-12)

1 1

From Eqs. (IV-8)and (IV-12)it then followsthat as da.o the strain-energy-

releaserate dV1/da contributedby the adherendswould approachzero. Since

dV = dV1 + dV2 and dA = da (per unit debond front),from Eqs. (IV-7)and (IV-

11) we obtain

The strain-energy-releaserate G calculatedfrom Eq. (IV-13)would be

equivalentto the conventionalGI + GII. It should be noted that if at the

debond front the adhesive is in compression(whichgenerallyis the case if

the bending stiffnessof the lap adherendis greaterthan that of the strap

adherend and if there is no transverseconstraintin the strap adherend),then

Eq. (IV-13)should be modifiedas follows:
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G = GII =_-- 1-_ ' (IV-14)

In this case the problemis equivalentto KI = 0 in a crack under mixed mode

conditions,and the effect of possiblecrack surface frictionis ignored.

RESULTS

As pointedout in the previoussection,the plate model used in this

study can give only the total strain-energy-releaserate G rather than GI

and GII separately. Furthermore,since plane strain conditionsare assumedto

prevail in z-direction,in the presentsolution GIII = O. For the trans-

verselyconstrainedloadingconditionand dimensionsshown in Figs. IV-1 and

IV-2 the resultsfor the complete range of the debond length are given in

Table IV-1 (see also Table IV-2). Here the adherendsare assumedto be alumi-

num (E = 72.450 MPa, v = 0.33) and the elasticconstantsof the adhesiveare

E = 1932 MPa, _ = -.40. To indicatethe overalltrend, the resultsare also

shown in Fig. IV-3.

From the expressionfor the strain-energy-releaserate given by

Eq. (IV-13)and from the calculatedresults,it was observedthat the contri-

bution of the first term (involving_x) to G is approximatelytwo orders of

magnitudesmallerthan that of the remainingterms. Thus, if the effect of

€x is neglected,the second and third terms in Eq. (IV-13)may be interpreted

as GI and GII, respectively. Partial resultsgiving the individualcontribu-

tions of the terms involving _, _, and €x in Eq. (IV-13)are given in

Table IV-2 and are labeledas GI, GII, and G_, respectively. Note that G

is the sum of these three terms.

Fig. IV-1 also shows the strain-energy-releaserate for the cracked lap-

shear specimenwithout the transverseend constraint. In this problemthe

transverseshear force Q at the end is zero and the specimen is free to
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"bend". Consequently,the normal stress in the adhesive is zero for the spec-

imen with equal thicknessadherendsand compressivefor the specimenwith

unequalthicknessadherends. Thus, for these two specimens G is calculated

from Eq. (IV-14). A peculiar resultobserved in these calculationswas that

in varyingthe debond length a from zero to 229 mm, G turned out to be con-

stant, namely

G = 45 J/m2 for CLS.A(hI = h2),

G = 74 J/m2 for CLS.B (hl= 2h2)

In the plate model adopted in this study, it is assumedthat in the

"debonded"part of the joint the adhesivelayer is completelyunloaded.

Therefore,in this model, the resultsare not sensitiveto the locationof the

"crack"in the adhesive and the calculated"crackopeningdisplacement"does

not have the conventionalmeaning.
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TABLE IV-1

CalculatedStrain Energy ReleaseRates
With Debond in Middle of Adhesive

J/m 2

Debond
Length
in. 0.1 0.25 1.0 4.0
mm. 2.54 6.35 25.40 101.60

CLSA

GI 39 43 62 51

GII 145 151 180 163

G€ 0.3 0.3 0.4 0.4

GT 184 195 243 214

CLSB

GI 102 110 126 19

GII 284 294 311 175

G 0.6 0.6 0.6 0.3

GT 387 404 437 194
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APPENDIX V

R. A. Everett,Jr.* and J. D. Whitcomb
NASA LangleyResearchCenter

Hampton,VA 23665

APPROACH

To analyzethe cracked-lap-shear(CLS) bonded joint configurationsspeci-

fied in this round robin, a two-dimensionalfinite elementprogramcalled

GAMNAS (Geometricand MaterialNonlinearAnalysis of S__tructures)was used.

This programwas developedat NASA Langleyto supportfracturemechanics

studies of debondingand delaminationand is documentedin Refs. V-1 and V-2.

This study used a nonlineargeometricanalysisassumingplane strain

conditions. To calculatestrain-energy-releaserates,GAMNAS uses a crack

closuretechniquelike that reportedin Ref. V-3. This is done by using the

forces transmittedthroughthe node at the crack tip and the relativedis-

placementsof the two nodes on the crack boundary closestto the crack tip to

calculatethe energy requiredto close the crack.

No specialcrack tip elementsare used in GAMNAS. For this analysis a

4-node isoparametricquadrilateralelementwas used. This finite element

programhas options for full and selectivereducedintegration. In this anal-

ysis selectivereducedintegrationwas used to improvethe element'sperfor-

mance in modelingbendingtype deformations.

The mesh for the CLSB specimenwith a 101.6 mm debond is shown in

Fig. v-i. All the analyzedconfigurationswere modeledsimilarly. All models

had about 1000 elementswith the thickestadherendhaving 9 elementsthrough-

the thicknessand the thinnest having 7. The adhesivehad 4 elementsthrough-

the thickness. At the debond tip the elements had an aspect ratio of one with

* U.S. Army AerostructuresDirectorate
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the length of the element being 0.032 mm. The debondwas modeledas a

perfectlysmooth crack betweenthe second and third elements in the adhesive

layer (in the middle of the adhesive).

RESULTS

The strain-energy-releaserates calculatedin this analysis are presented

in Table V-I. Both linear and nonlinearresultsare given for mode I, mode

II, and the total strain-energy-releaserates at the four debond lengths

analysed.

The most significanctobservationfrom the resultsin Table V-1 is that

the GT calculatedfrom the nonlineargeometricanalysis is almost constant

with debond length,whereas, the linear resultsshow GT to vary with debond

lengthwith a maximum value at one inch. The ratio of GI/GII behaves in a

similarmanner. In general,for both configurationsthe nonlinearvalue of G

is less than the linear value. The resultsalso show that the CLSB configura-

tion with the thicker lap adherendgives a higher value of GT.
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TABLE V-1

CalculatedStrain-Energy-ReleaseRate With Debond
In Center Of Adhesive,J/m_. Both Geometic
Linear And NonlinearResultsAre Presented.

Debond
length
in. 0.10 0.25 1.0 4.0

mm. 2 54 6135 25 4 101 6
linearnonlin, linearnonlin, linearnonlin, linearnonlin.

CLSA

GI 37 39 44 39 60 39 47 40

GII 145 147 149 149 180 151 163 152

GT 182 186 193 187 240 189 212 193

CLSB

GI 100 51 110 51 123 53 19 46

GII 284 221 291 222 312 226 175 217

GT 383 271 401 273 434 279 194 263
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APPENDIXVI

William L. Hufferd
United Technologies

Chemical Systems Division
San Jose, California

APPROACH

Linear elastic analyses of the two cracked lap shear geometries were

conducted using two different finite element codes: TEXGAP(Ref. VI-I) and

VISTA (Ref. VI-2). Geometrically nonlinear analyses were conducted for one

cracked lap shear geometry using VISTA.

The version of TEXGAPused at CSD calculates stress intensity factors in

one of three ways: (I) using a hybrid crack element, (2) using contour inte-

gration, and (3) using a singular crack element. The hybrid crack element was

used in the current calculations. This element is based on a displacement

formulation in which the displacements are interpolated over the boundary of

the element and the stresses are interpolated over the interior of the ele-

ment. Mode I and mode II stress intensity factors are calculated directly.

The hybrid element is an ll-node, square element with its local coordi-

nate system located at the center of the element (i.e., the crack tip). The

element may be used for plane stress or plane strain geometries or axisym-

metric geometries at large radius. It has been reformulated for

incompressible or nearly incompressible materials, and it includes thermal

loadings, but excludes body forces. The crack surfaces within the element are

assumed traction free.

The hybrid crack element used 15 interpolating, quadratic displacement

functions for boundary displacements which insure interelement compatability

with adjacent quadratic elements, and 19 different interpolating stress func-

tions for the interior of the element which identically satisfy both
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compatabilityand equilibrium. Symmetricand antisymmetricstress distribu-

tions are includedas well as mode I and mode II stresses. The stress fields

model the square-rootsingularityand also incorporateeigenvaluesgreater

than one. The angular dependenceof the stress distributionis also appro-

priatelymodeled.

VISTA is a finite elementcode for the solution of two dimensional(axi-

symmetricor generalizedplane strain)quasistaticviscoelasticstress anal-

ysis problemswith small strainsand small or large displacements. The

singularelement used for fracturemechanicsanalysiswith VISTA is based on

the interpolatingshape functionsgiven by Stern (Ref. VI-3). It is a six-

node subparametrictriangle. The corner nodes are used for geometryinter-

polation and the midside and corner nodes are used for displacementinter-

polation. Thus, it is a straightsided element. The order of the singularity

(one-halffor linearelastic, isotropicmaterials)is input by the user. The

displacementsare quadraticalong the side of the elementoppositethe singu-

lar point, thus conformingwith the quadraticisoparametricelements in VISTA.

The implementationof the elementin VISTA uses the standardelement

stiffnessand load vector routines. Thus, the constitutivepropertiesare

handled by the same routinesas regularelementsso that any material can be

used in the singular elements. The numericalintegrationsin the singular

elementuse a speciallyderivedquadraturerule.

The code outputsthe coefficientsof the displacementfield; i.e.,

U l :
X P_fu (e)

U I =
y PLfv (e)
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where }, is the order of the (user specified)singularityand p and e are

polar triangularcoordinate. For the mixed mode problemin an isotropic

linearlyelastic solid with _ = 1/2, the plane strain near field

displacementsare given by:

x - G i/_2-_cos _ - 2v + sin

KII /-P sin_[2-2v+ cos2_]+T4 _

]Uy= ?_--_-_COS-_- - 2v+ sin2

+-_-#_cos_ 1+2_+sin2

where G is the shear modulus and v is Poisson's ratio for the material.

Selectingthe crack faces at o = _ for evaluating KI and KII leads to

the simple expressions:

_ E

KI 4(1_v2)_/_ fv(0)

_ E

KII 4(1_v2)_F_%(0)
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These latter expressions were used to calculate stress intensity factors from

VISTA output for fu(O) and fv(O), from which mode I and mode II strain-

energy-release rates, GI and GII , respectively were calculated using:

(I - 2) K_
GI : E

(i - 2) K_I
GII = E

DESCRIPTIONOF ANALYSISCONDUCTED

A typical deformed finite element model is shown in Fig. VI-1 for the

CLS-B geometry with a 25.40 mmcohesive crack through the midplane of the

adhesive layer. The model contains 397 elements. Four elements were used

through the 5-mil thickness of the adhesive layer. The mesh in the neighbor-

hood of the crack tip is shown in Fig. VI-2. The crack-tip region itself was

modeled with eight singular triangular elements. The singular elements were

overlaid with the hybrid crack element as shown in Fig. VI-3 for the TEXGAP

analyses. All other finite element models for analyses of both crack lap

shear geometries: CLS-A(3.18 mmthick lap and strap) and CLS-B (6.35 mmthick

lap and 3.18 mmthick strap) were similar, except that the 4 × 4 fine mesh was

moved with the crack tip for other crack lengths.

Linear elastic analyses were conducted for both CLS geometries for 2.54,

6.35, 25.4 and I01. 6 mmcohesive cracks in the adhesive. A geometrically

nonlinear analysis was conducted for a 25.4 mmcrack in the 6.35 mmlap and

3.18 mmstrap CLS geometry (CLS-B). All analyses assumed plane strain

conditions.
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DISCUSSIONOF RESULTS

One linear elastic analysiswas conductedusing VISTA to provide a

baseline for comparisonwith TEXGAP analysis results. The two codes gave

virtuallyidenticalstressesand displacementsand the stress intensity

factors calculatedfrom the coefficientsof the displacementsfrom VISTA were
.

within 2 percentof those obtained from the hybrid crack elementused with the

TEXGAP analyses.

Table VI-1 summarizesthe calculatedstrain-energy-releaserates. A

slight maximum is observed at a crack length of about 25.4 mm. The thicker

lap of CLS-B resultsin highermode I and mode II valuesthan is observed for

the equal thicknessadherends.

A geometricallynonlinearelasticanalysiswas conductedusing VISTA in

which the total load was appliedin two load steps. Convergencefor the first

load step took six iterations,while that for the second took four iterations.

A major effect of the nonlinearanalysiswas to "smooth"the distortionof the

singular crack-tipelements on the free surfaceof the crack face. As a

result, KI droppedapproximately50 percent from the VISTA linear analysis

while KII changedonly about 20 percent.

As a final remark,the absolutevalues of the stress intensitiescomputed

from the nonlinearanalysisshould be carefullyinterpreted. These calcula-

tions were made assumingthat the order of the crack-tipsingularitywas one-

half, the same as for a linearelastic analysis;and the calculationswere

made using the same displacementequationsas used in a linear elastic

analysis. The validityof these assumptionsfor this nonlinearproblemis not

known. In general,in this situation,more reliableresultswould be obtained

from a patch-independentintegralcalculation,such as a J-integral,which has

demonstratedvalidity for nonlinearelasticityproblems.
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TABLE VI-1

ResultsWith Debond In Middle Of AdhesiveUsing TEXGAP
(GeometricLinear)

J/m 2

Debond
Length,
in. 0.10 0.25 1.0 4.0
mm. 2.54 6.35 25.40 101.60

CLSA

GI 35 37 60 42

GII 142 149 172 156

GT 177 186 232 198

CLSB

GI 88 114 116 47* 12

GII 282 298 310 207* 168

GT 370 412 426 254* 180

*Calculatedusing VISTA (GeometicNOnlinear)at a_25.40mm.
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APPENDIXVII

George E. Law
General Dynamics

Fort Worth Division
Fort Worth, Texas

APPROACH

Non-linear geometric finite element analysis was performed with MSC/

NASTRANusing "Solution 64". This is a non-linear geometry solution sequence

for large displacement/small strain applications. The solution technique is

based on the geometric stiffness approach. Details of this method are con-

tained in Section 2.9 of the "MSC/NASTRANApplication Manual Volume I", The

MacNeal-Schwendler Corporation, Los Angeles, California, May 1983.

The two-dimensional finite-element model constructed for the analysis of

the cracked lap shear specimen analysis is shown in Fig. VII-I. Isoparametric

3-node triangles and 4-node quadrilateral elements were employed in this

model. The model was constructed using the load and out-of-plane directions

to describe the 2D space. A state of plane stress was assumed. Fig. VII-I

shows the outline of the exterior surface of the model accentuating the crack

line. A blow-up of the mesh at the crack tip area is also shown. Two models

were made: one with a short, incomplete glue line and the second in which the

complete glue line was modeled downstream from the crack tip. The elements in

the crack-tip region were 0.0159 x 0.0159 mm.

The boundary conditions applied to the model were

u(O,y) : 0

v(O,O)= o

v(L,O)= 0

The loadingwas appliedas a tensileforce of 2268 kg. (2500 lb.) at x = L;

the force was uniformlydistributedthroughthe thicknessof the model.
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The modified crack closuretechnique (Ref. VII-I) was used to calculate

the mode I and mode II componentsat the crack tip. Referringto Fig. VII-2,

the nodal forces at "f" and the displacementsat the first upstream nodes, "g"

and "h", are combinedto calculatethe work to close the crack. The mode I

and mode II componentsof the energy releaserate are calculatedas

, GI = Fy dv/2Aa

GII = Fx du/2Aa

where

!

dv = Vg - vh

I

du = Ug - uh

Fx and Fy are the forces in the respective X and Y directionsthat

resist the crack againstopening,and aa is the distance betweennode "f"

and nodes "g" and "h" in the undeformedstate.

In the case of the non-lineargeometricanalysis,the X- and Y- axes for

the mode I and mode II componentsmust be defined in the deformedstate.

Fig. VI-3 shows the relationsrequiredto determinea new X' -Y' coordinate

system alignedwith the crack. The resultsof the finite elementanalysisare

transformedinto the X' -Y' coordinatesystemthrough standardtensor trans-

formationsand the mode I and mode II componentsof the energy releaserate

are then calculated.

RESULTS

Two glue line models were used in this analysis. The short glue line

model was found to produceerroneousresultswhen comparedwith the full glue
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line model. This short glue line model was exercisedfor all of the analysis

cases of the round robin. Those results,although erroneousin magnitude,are

presentedin Table VII-1 to describetrends in the CLS analysis. The full

glue line model was only exercisedfor two cases of the round robin. Since

the resultsfor that analysis agreedwith resultsof other round-robinpartic-

ipants using nonlineargeometricanalysis,it is inferredthat all of the

other cases would also agree.

Table I presents the energy release rates calculatedfor the equal thick-

ness and unequal thicknessadherend configurations. These values were calcu-

lated from the short glue line model and are only of value in that the trend

of the analysis is represented. Two observationscan be made from these

results: the unequal thicknessadherendshows greatermode II than the equal

thicknessadherend coupon,and the calculatedenergy releaserates are essen-

tially constantwith crack length except for a slight perturbationin the

short crack length range. The increasein the mode II componentwith increase

in the thicknessof the lap of the coupon is a direct result of increased

stiffness (EA)of the lap. The increasein lap stiffnesscauses greater shear

transfer across the bondline.

The relationshipbetweenenergy releaserate and crack length can be de-

scribedbased on conceptsof self-similarcrack propagation. For long crack

lengths,the highly stressedzone-surroundingthe crack tip does not interact

with the end boundaries. Also, since the crack is parallelto the load di-

rection, the net sectionis not reduced. Thus, it is inferredthat the energy

releaserate should be independentof crack length. For the short crack

lengths considered,the length of the crack is on the same magnitudeas the

thicknessof the adherends. In this case, interactionsbetweenthe stresses
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around the crack tip and the boundary conditions,particularlythe free

boundaryat the end of the lap, can be anticipated.

Table VII-2 gives the full glue line model resultsobtained for the con-

stant thicknessadherend case in the short (2.54 mm) and long (101.6mm) crack

length configurations. For the short and long crack length cases, Figs. VII-4

and Vl-5 respectivelyshow the relationshipbetweenthe calculatedenergy

release rates and the number of iterationsin the nonlinearsolution. Itera-

tion number 1 representsthe linear solutionand numbers2, 3, 4, and 5 repre-

sent each nonlineariteration. These figuresshow that the solutionfor the

energy releaserate convergesafter two nonlineariterationsdemonstrating

that a linear solution is invalid.

Conclusionsof this study are that the energy releaserate is relatively

constantwith crack length in the cracked-lap-shearspecimen. Also, the full

glue line must be modeled in the adhesiveCLS coupon to obtain proper internal

shear transfer in the analysis.
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TABLE VII-1

CalculatedStrain Energy ReleaseRates For Short Bondline*
With Debond In Middle Of Adhesive

(*Use for analysistrends only)

j/m2

Debond
Length
in. 0.10 0.25 1.0 4.0
mm. 2.54 6.35 25.40 101.60

CLSA

GI 35 36 36 37

GII 83 84 85 6

GT 118 120 121 123

CLSB

GI 36 38 37 33

GII 124 128 127 124

GT 160 166 164 157
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TABLE VII-2

CalculatedStrain Energy ReleaseRates For Full Glue Line
With Debond In Middle Of Adhesive

J/m 2

Debond
Length
in. 0.10 0.25 1.0 4.0
mm. 2.54 6.35 25.40 101.60

CLSA

GI 45 .... 47

GII 176 .... 181

GT 221 .... 228
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The Netherlands

APPROACH

A finite elementprogram,ASKA (Ref. VIII-l)using three-dimensional

strain elements (isoparametric)was used. K- and G- values are assumedto be

relatedto displacementsin the crack tip fields accordingto linear elastic

fracturemechanicstheory as describedby Paris and Sih [VIII-2].

At the debond frontline,elementsare appliedwith singularstrain field

at the tips (subnet1). Other subnets (2 ... 5) consist of normal hexagonal

27-node elements. The debond size is varied by changingx-coordinatesof the

subnetsin front of or behindthe debondtip. The mesh is shown in

Fig. VIII-I. GI, Gil, and GIII are derived from K-values by Eq. (VIII-l)for

mode I

2

GI= •I (viiiI)

K1 is derived from displacementsof nodes close to the debond tip, using

Eq. (VIII-2).

Ki(r) _ (Ul - u2) E_2/_ (VIII-2)
" 8(i_v2)

where Ul, u2 are displacementsat a distance r from the debond tip at the

lap- or strap-side,respectively. The Kl-value at the tip is found by linear

extrapolationsof Kl(r)-values,especiallyfrom nodes of the crack tip ele-

ments. Similar formulas[VIII-l,VIII-2] are valid for mode II and mode III

within the latter case: (I+_) insteadof (1-v2).
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RESULTS

Table VIII-l: G-values are derived for 3 positions along the debond line

across the specimens width, (z = 0 is the mid-plane of the bar). The GTotal-

value, however, is derived using the virtual crack extension method [VIII-2]

and the equation:

dU (VIII-3)G - dA

where dU is the elasticenergy variationby a very small local cracksize

variationdA.

dU: IS - S*]u

where _ is the displacement vector and [S - S*] is the variation of the

stiffness by virtual debond variation.

This total energy release value is expected to be considerably more accu-

rate than the separate GI, GII, Glll-Values obtained. However, the distri-

bution over three modes can not be found in this way.

With respect to the total strain-energy-release rate results

(Table VIII-I) we propose some adaption in order to properly compare these

three-dimensional results with other two-dimensional data. Therefore, a

"weighted average" of these results for discrete positions along the debond-

zone frontline is proposed in the following form:

Gtot(av) = .4 Gtot(z=O)+ .5 Gtot(z=.4) + .i Gtot(z=.5)
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Differentfactors refer to differentareas of virtualdebond extensions

(Fig VIII-2). The correctedresultsare given in Table VIII-2.

A remarkableeffect found by the three-dimensionalcalculationis the

"closure"of the debond-openingat the edges of the specimen,as seen by

detail-observationsof cross-sectionaldeformationsof both adherends,in a

" plane very close behind the debond tip (Fig.VIII-3). Local Gi-values

decrease rapidly from the mid-planetowards the side of the bar, whereas

GiIi-Valuesincrease.

Unfortunately,this phenonemawas not studiedin more detail, i.e. by

using finer meshes, or non-linearcalculation.
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TABLEVIII-1

CalculatedStrainEnergyReleaseRates
With DebondIn MiddleOf Adhesive

J/m2

Debond
Length,
in. 0.10 0.25 1.0 4.0
mm. 2.54 6.35 25.40 101.60

Z/I.0 in. 0 .4 .5 0 .4 .5 0 .4 .5 0 .4 .5
mid side mid side mid side mid side

CLSA

GI 14 7 0 17 8 0 28 12 .05 23 10 0

GII 119 105 122 135 113 136 154 131 155 141 115 136

GIII 0 3 33 0 13 38 0 16 47 0 16 43

GT 205 187 194 224 208 217 281 255 255 247 222 222
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TABLE VIII-2

Total Strain Energy ReleaseRate for CLSA

Debond length Gtot (averaged)

a, mm J/m2

2.54 1.95

6.35 216

25.40 266

101.60 232
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APPROACH
p

The analysis of cracked-lap-shear specimens requires a geometric non-

linear method [IX-I, IX-2]. In the present approach, this nonlinear analysis

was conducted by combining a simple nonlinear analysis (based on strength-of-

materials theory) with a linear finite element analysis in the following

manner [IX-3]. Figure IX-l(a) shows the cracked-lap-shear specimen which is

to be analyzed with a geometric nonlinear method to account for the

deformation which responds nonlinearly to the applied load geometry. Figure

IX-l(b) shows a small region of this specimen near the debond front. This

region near the debond front can be analyzed with a linear method provided

moments, axial and shear loads acting on the boundary are obtained from a

nonlinear analysis.

A nonlinear analysis based on a simple strength-of-materials theory was

developed to compute moments, axial and shear loads acting on the boundary of

the small region of the CLS specimen as shown in Fig. IX-l(b). This nonlinear

analysis is the extension of a previous analysis [IX-4]. The previous anal-

ysis was for an infinitely long CLS specimen (i.e. independent of debond

length), while the present one accounts for the finite length of the specimen

and the debond. Fig. IX-2 shows the CLS specimen and the deformation of

79



its centroidalaxis. From the simple beam theory,the followingexpressions

for lateraldeflectionof centroidalaxis were obtained.

x>O

(y2-Yo)}.ocoth(_0) sinh (_2_2-_2x)y(x)
_2coth(_,2_2) + _ocoth(},O_)• sinh(_2_2)

x <0

-(Y2-Yo)X2coth(_2_2) sinh(_)_O-_oX)

y(x) - _,2coth(},2_2)+ _,ocoth(_o_)• sinh(_o_ )

X2 =_/P/(El)2

_0 =_/P/(El)0

Using the above equations,the moments, axial and shear loads acting on the

small region shown in Fig. IX-l(b)were computed. Thereafter,this region

with computed boundary loads and momentswas analyzedwith a two-dimensional

linear elastic finite elementanalysis.

The finite elementmesh consistedof 510 four-node,isoparametricquadri-

lateralelementsand had 1200 degreesfor freedom. The length of region ana-

lyzed with FEM was 6.35 mm on each side of debond front (i.e. total lengthof

12.7 mm). The analysiswas conductedunder plane strain condition. The adhe-

sive was modeledwith four layers of elements. The smallestelementsize near

the crack tip was 0.0318 x 0.0318mm. The strain-energy-releaserates GT, GI,

and GII in the FEM analysiswere computedusing a virtualcrack closuretech-

nique (Ref. IV-5).
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RESULTS

The computedstrain-energy-releaserates (GT,GI, and GII) for both CLS A

and CLS B specimensare presentedin Table IX-I.

DISCUSSION

. A simple approachfor analysingthe geometricnonlinearproblem of the

CLS specimen is suggestedby combininga simple nonlinearanalysis (basedon

the strength-of-materialstheory)and linear finite elementanalysis.
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TABLE IX-1

CalculatedStrain Energy ReleaseRates With
Debond In Middle Of Adhesive

(JIm2)

Debond
Length,
in. 0.10 0.25 1.0 2.0 4.0
mm. 2.54 6.35 25.40 50.80 101.60

CLSA

GI 42 43 44 44 45

GII 149 149 151 151 152

GT 191 192 195 195 197

CLSB

GI 51 52 54 57 68

GII 200 202 205 209 222

GT 251 254 259 266 290
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